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Abstract: Acute Respiratory Distress Syndrome (ARDS) is a condition that endangers the lives of
many Intensive Care Unit patients through gradual reduction of lung function. Due to its hetero-
geneity, this condition has been difficult to diagnose and treat, although it has been the subject of
continuous research, leading to the development of several tools for modeling disease progression on
the one hand, and guidelines for diagnosis on the other, mainly the “Berlin Definition”. This paper
describes the development of a deep learning-based surrogate model of one such tool for modeling
ARDS onset in a virtual patient: the Nottingham Physiology Simulator. The model-development
process takes advantage of current machine learning and data-analysis techniques, as well as efficient
hyperparameter-tuning methods, within a high-performance computing-enabled data science plat-
form. The lightweight models developed through this process present comparable accuracy to the
original simulator (per-parameter R2 > 0.90). The experimental process described herein serves as
a proof of concept for the rapid development and dissemination of specialised diagnosis support
systems based on pre-existing generalised mechanistic models, making use of supercomputing in-
frastructure for the development and testing processes and supported by open-source software for
streamlined implementation in clinical routines.

Keywords: high-performance computing; machine learning; ICU; ARDS; surrogate model; virtual
patient

1. Introduction

Respiratory diseases endanger the ability of the respiratory system to supply the
body with oxygen and to eliminate carbon dioxide sufficiently, potentially causing life-
threatening consequences. These conditions are caused on one hand primarily by damaging
the pulmonary tissue through, for instance, infection, toxic effects of inhaled gases or fluids
or trauma. On the other hand, the lung can be affected indirectly as a side-effect of diseases
of other organs [1]. Early diagnosis and treatment are essential to achieve positive outcomes
for patients [2–5]. Critically ill patients who require treatment in an Intensive Care Unit
(ICU) are at high risk of developing respiratory disease, one of the most serious of which
is Acute Respiratory Distress Syndrome (ARDS), a condition that was first described by
Ashbaugh et al. [6]. ARDS is still the subject of intensive research due to its high incidence
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in ICU patients as reported by Confalonieri et al. (10.4% of total ICU admissions) and high
mortality rate as highlighted by Le et al. (30–55% of affected patients) [3,5].

ARDS is further characterised by its heterogeneity and the difficulty with respect to
diagnosing it, leading clinicians and researchers to establish the “Berlin Definition” by
which ARDS onset is defined as a ratio of Partial Pressure of Arterial Oxygen (PaO2) to
Fraction of Inspired Oxygen (FiO2) (P/F ratio) of less than 300 mmHg in combination
with bilateral opacities in pulmonary imaging and absence of hypervolemia and heart
failure [7]. Furthermore, this definition classifies the severity of the condition to be inversely
proportional to the value of the P/F ratio. Despite widespread research activities in this field,
which were even intensified during the COVID-19 pandemic, effective treatment methods of
ARDS are still lacking, resulting in a high mortality rate [3,5]. In fact, Bellani et al. highlight
that ARDS diagnosis is still delayed or missed in two thirds of patients, leading to severe
outcomes [8]. The management of ARDS patients, thus, usually remains supportive with
lung-protective mechanical ventilation, prone positioning and extracorporeal membrane
oxygenation (ECMO) treatment as ultima ratio [9–12].

In developing the Nottingham Physiology Simulator (NPS), Hardman et al. launched
an in silico tool for modeling pulmonary disease progression and determining the potential
effectiveness of treatment methods [13]. This model was later improved upon by Das et al.
and Saffaran et al. to include elements of the cardiovascular system and to improve its
performance, which extended its usefulness even further [14,15]. The resulting virtual
patient simulator was validated through generating outputs for initial conditions similar
to real-world ARDS patients and it was found that these model outputs were consistently
comparable with the source clinical data [16]. With a tool such as the NPS, clinicians
and biomedical engineers can consistently and accurately model individual patient states,
predict the onset of disease and formulate and validate potential treatment methods to
guarantee the best outcomes for patients.

The development of models such as the NPS was simplified with the advent of
Electronic Health Records (EHRs). Making large amounts of clinical data easily accessible
has enabled a lot of research in healthcare, and has helped highlight pathological patterns
and uncover treatment methods, but has also sparked discussions about patient privacy and
data security [17–19]. As these records grow into the realm of Medical Big Data, the need
to develop more efficient storage for the data and more capable computing resources to
process them grows at a similar rate [20–23]. Thus, it is essential to make High-Performance
Computing (HPC) available for biomedical applications and to develop the algorithms to
take advantage of these resources in order to clean, process, analyse and extract information
from the available data.

It follows that several teams have already employed available HPC resources in the
storage and analysis of Medical Big Data or in training Machine Learning (ML) and Deep
Learning (DL) models. Kesselheim et al. applied the Jülich Wizard for European Leader-
ship Science (JUWELS) (https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/
juwels (accessed on 3 February 2023)) supercomputing cluster and booster to perform pre-
training of the ResNet-152 DL network. Their goal was to highlight the speed-up achieved
using the HPC resources and to eventually perform large-scale transfer learning using the
publicly available COVIDx (https://www.kaggle.com/datasets/andyczhao/covidx-cxr2
(accessed on 3 February 2023)) dataset to develop a tool for rapid COVID-19 detection
from Chest X-rays (CXRs) [24]. The researchers also discussed using their supercomputing
resources to improve the available ML methods for RNA structure prediction. In a similar
vein, Baek et al. and Jumper et al. concurrently published their results for the Artificial
Intelligence (AI) models RoseTTAFold and AlphaFold, which make use of the HPC clusters
available at the University of Washington and at Google, respectively [25,26]. Both teams
used an implementation of multi-track DL networks in an attempt to solve the protein-
folding problem and in both cases the results were highly accurate. Finally, Zhang et al.
made use of HPC to perform hyperparameter tuning on an ML model for Alzheimer’s
disease detection [27]. Their work highlights the speed-up that can be achieved by making

https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/juwels
https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/juwels
https://www.kaggle.com/datasets/andyczhao/covidx-cxr2
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use of HPC, especially in situations where many trials need to be performed with minute
changes in order to find the optimal parameter combination that produces the best results.

This paper describes the process by which an ML and data science platform that
takes advantage of Modular Supercomputing Architecture (MSA) available from the Jülich
Supercomputing Centre (JSC) is used to build a surrogate model of the NPS with the
intention of implementing it for streamlined ARDS-diagnosis support [28–30]. In order to
achieve this primary goal, several steps need to be completed as follows:

• Medical data collection, cleaning, analysis and visualisation.
• Data augmentation through statistical analysis of the available clinical data.
• Parallel simulation of patient states using a ported NPS.
• Parallel hyperparameter optimisation of the developed DL model using Ray Tune [31].
• Final training of the DL-based surrogate model and validation of the results with the

original simulation.

As Gherman et al. highlighted, several researchers have already developed ML surro-
gate models from complex mechanistic models [32]. These surrogates benefit greatly from
the high accuracy of the mechanistic models they emulate, while avoiding the computation
overhead associated with equilibrating multiple complex differential equations. This aspect
coupled with the use of a pre-established HPC-enabled data science and ML platform that
was validated in previously published work represent the core innovations of the research
described in this manuscript [28,29]. In this way, the HPC resources are instrumental to the
accelerated development and testing of the surrogate.

This work is conducted as part of the use case Algorithmic Surveillance of Intensive Care
Unit patients with ARDS (ASIC) which is part of the Smart Medical Information Technology
for Healthcare (SMITH) project under the guidance of the German Federal Ministry of Ed-
ucation and Research (BMBF) [33,34]. Furthermore, the work described here paves the way
for the future development of surrogate models from pre-established mechanistic disease
representations, thus providing valuable tools to accelerate diagnosis in critical situations.

2. Materials and Methods

The experimental process leading towards completion of the research objective de-
scribed in the Introduction is represented in Figure 1. The subsections below go further into
the details of each step of the experimental process as well as the hardware and software
implemented within them.

2.1. HPC Resources

The Dynamic Exascale Entry Platform (DEEP) series of projects (https://www.deep-
projects.eu/ (accessed on 3 February 2023)) was set up to highlight the benefits of using
heterogeneous architectures in HPC to pave the way towards exascale computing by introduc-
ing boosters alongside traditional supercomputing clusters [35,36]. The boosters, which run
independently of the cluster nodes used for traditional supercomputing tasks, offer the option
of expanding storage and compute power for specific tasks, including large-memory nodes
for image-processing tasks and multi-GPU nodes for accelerated DL tasks. Thus, the DEEP
projects introduced the Modular Supercomputing Architecture (MSA) concept that would
later be used in development systems such as the JUWELS cluster and booster, unveiled in
2018 and 2020, respectively [37]. The specific configuration of the cluster-booster prototype set
up in the DEEP project and its subsequent projects, DEEP-Extended Reach (DEEP-ER) and
DEEP-Extreme Scale Technologies (DEEP-EST), is presented in Table 1.

Table 1. Partitions on the DEEP Prototype.

Partition Nodes CPUs/Node GPU

DEEP-Data Analytics Module 16 96 NVIDIA V100 + Intel Stratix10 FGPA
DEEP-Extreme Scale Booster 75 16 NVIDIA V100
DEEP-Cluster Module 50 48 n/a

https://www.deep-projects.eu/
https://www.deep-projects.eu/
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Figure 1. Flow diagram describing the data augmentation and surrogate model development steps
within the data analysis and ML platform. The flow of data is represented in green, while the models
are represented in blue.

2.2. Software and Libraries
2.2.1. Nottingham Physiology Simulator

The NPS is made available as part of the SMITH project as a central MATLAB (https:
//www.mathworks.com/products/matlab.html (accessed on 3 February 2023)) script ac-
companied by peripheral functions written either in MATLAB or in C-script and converted
at initial startup into the MATLAB executable (.mex) format. Version 1.4 of the simulator
was made available for this research as part of the SMITH project. Further updates to the
NPS have already been implemented which improve its performance [15]; however, all
of the experiments described in this manuscript concern the version mentioned above.
The simulator loads patient data from prepared input files, then runs a preset number of
cycles during which it solves a series of differential equations that model the gas exchange
occurring during a breathing cycle.

Disease states can be modeled in the simulator through adjusting the input parameters,
such as reducing oxygenation, reducing lung compliance or changing the acid–base balance
of the blood [16,38], which are typical pathophysiological alterations in ARDS patients [39].
Previous research has validated the performance of the NPS compared to the responses of
real patients in the ICU [13,15,40].

Given all of the above, the NPS is certainly a valuable tool in the hands of clinicians
aiming to understand medical conditions such as ARDS and to analyse potential treatment
methods. It does, however, have specific shortcomings:

• The time required to run individual simulations makes it unfeasible to use the NPS in
diagnosis support, especially for more time-critical clinical situations.

• The outputs are broad and extremely detailed, requiring users to filter through them
in order to extract the information useful for their specific task.

• It uses proprietary and license-based software, which is a limiting factor for applica-
tions on a large scale, especially in remote clinics that would not have proper funding
for it.

These shortcomings highlight the need to convert the NPS and to develop the surrogate
model as described in the remainder of this manuscript.

2.2.2. Software Used in Model Conversion

As mentioned above, the NPS is built in MATLAB and thus is implemented on
a local machine running MATLAB version R2019a within Windows 10 version 22H2.
Additionally, the MATLAB Coder (https://www.mathworks.com/products/matlab-coder.

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab-coder.html
https://www.mathworks.com/products/matlab-coder.html
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html (accessed on 3 February 2023)) software plugin is used in order to export the simulation
as a C-script and package it for implementation on the HPC cluster.

The remainder of the programming done for this project uses the Python (https:
//www.Python.org/ (accessed on 3 February 2023)) programming language with ad-
ditional packages installed through the built-in pip function or loaded from the list of
pre-installed modules available on the HPC cluster. The packages include Numerical
Python (NumPy) (https://numpy.org/ (accessed on 3 February 2023)) and Pandas (https:
//pandas.pydata.org/ (accessed on 3 February 2023)) for data structure manipulation,
MatPlotLib (https://matplotlib.org/ (accessed on 3 February 2023)) for data visuali-
sation, Keras (https://keras.io/ (accessed on 3 February 2023)) (running from within
TensorFlow (https://www.tensorflow.org/ (accessed on 3 February 2023))) and Scikit-
Learn (https://scikit-learn.org/ (accessed on 3 February 2023)) for performing the ML
tasks and mpi4py to bind to the Message Passing Interface (MPI) and handle the paral-
lelisation aspect of some of the data-manipulation tasks [41]. Hyperparameter tuning is
done using Ray Tune, which in turn employs different scheduling algorithms in order to
simplify the task of finding the optimal parameters for training the final model [31]. Finally,
the HPC cluster employs the Simple Linux Utility for Resource Management (SLURM)
scheduler (https://slurm.schedmd.com/ (accessed on 3 February 2023)) in order to dis-
tribute the submitted training and tuning jobs onto the available computing resources. The
submission of jobs is done using shell scripts that define the environments to load and the
resources to recruit for each specific job.

2.3. Model Preparation

In order to build the surrogate model, it is necessary to convert the NPS to a format
that can more easily be run in parallel, which would then be used to generate data to
train the DL model with. Exporting the model in C-script would be a simple task given
its similarity to the MATLAB programming language, as well as the availability of the
MATLAB Coder plugin. Accordingly, the various peripheral function files that make up
the NPS are grouped into a single script as per the requirements of the MATLAB Coder and
the input parameters are defined according to the variables provided in the patient data.

Additionally, the original model outputs an array containing several parameters
recorded over every time step of the simulation, which made exporting values difficult.
Therefore, the output parameters are reduced to only include the final values of markers
for a pulmonary impairment, which can be consistent with an ARDS onset (PaO2, Partial
Pressure of Arterial Carbon Dioxide (PaCO2), pH and Bicarbonate).

This converted model is tested locally on several patients and its outputs are compared
to those from the original simulation in order to verify its integrity. The duration of
each simulation is also recorded in order to evaluate the speed-up achieved through this
conversion. Moreover, the same patient simulations are performed on the HPC cluster to
both validate the outputs and to highlight the speed-up that can be achieved when running
several instances concurrently.

2.4. Data

The data used in this research were collected from the open-source Medical Infor-
mation Mart for Intensive Care - III (MIMIC-III) database as part of the research done by
Sharafutdinov et al. also within the scope of the SMITH project [42–44]. Due to the limited
number of patients and the inconsistent representation of their parameters, it was decided
to generate simulated data based the statistical distribution of the original data extracted
from the MIMIC-III database. In order to perform this data augmentation, the statistical
distribution of each parameter listed in Table 2 is analysed and a generator is developed
that outputs randomised snapshots of patient states emulating a wide range of real-world
parameter combinations. The choice of these parameters was based on the input parameters
required for proper functioning of the NPS. Matching the parameters from the simulation
to their equivalent values in the MIMIC-III database was done by Sharafutdinov et al. in

https://www.mathworks.com/products/matlab-coder.html
https://www.mathworks.com/products/matlab-coder.html
https://www.Python.org/
https://www.Python.org/
https://numpy.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://matplotlib.org/
https://keras.io/
https://www.tensorflow.org/
https://scikit-learn.org/
https://slurm.schedmd.com/
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previous work [43,44]. Table 3 provides a statistical description of the data extracted from
the source dataset while Figure 2 presents a comparison of the distributions of the source
data and the generated data. In this case, the minimum and maximum cutoff values were
chosen based on discussions with clinicians.

Table 2. Input and Output parameters of the C-ported virtual patient simulator.

Parameter Description

Input Parameters v_sR, v_inR Used to calculate individual Compartment Resistance to
Flow (Rcomp) values

v_sVR, v_inVR Used to calculate individual Compartment Vascular
Resistance (VRcomp) values

v_nc Number of Closed Compartments
asht Anatomical Shunt
RQ Respiratory Quotient
VO2 Oxygen Uptake
VDphys Volume of Physiological Deadspace
CO Cardiac Output
I:E Inspiratory to Expiratory Ratio
Hb Hæmoglobin
FiO2 Fraction of Inspired Oxygen
PEEP Peak End-Expiratory Pressure
PEI End-Inspiratory Pressure
SvO2 Venous Oxygen Blood Saturation
RR Respiratory Rate
Vt Tidal Volume
BEa Arterial Base Excess

Output Parameters PaO2 Partial Pressure of Arterial Oxygen
PaCO2 Partial Pressure of Arterial Carbon Dioxide
HCO3 Bicarbonate Concentration
pH Blood Acidity Level

Table 3. Statistical description of the parameters extracted from the source dataset.

BEa Hb Vt PEEP PEI FiO2 SvO2 RR

Unit mmol/L mmol/L mL cmH2O cmH2O % %
Min −15 6 220 0 0 20 30 10
Max 15 12 840 24 40 100 100 40
Mean 1.37 9.15 463.80 8.64 21.68 41.08 68.81 20.83
SD 4.42 1.17 115.13 3.15 5.76 12.39 11.03 5.73

Figure 2. Histograms comparing the distribution of the generated input data with that of the original
data. The red lines represent the means for each parameter.
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As these data are fed into the reduced simulation, the aforementioned markers of
ARDS onset of these patients are generated. The end result of this data-manipulation
step is a collection of 1,000,000 initial states of patients made up of 19 input parameters
and 4 associated expected outputs. The output parameters were chosen based on a sen-
sitivity analysis done by Sharafutdinov et al. in previously published research [44] and
are presented in Table 2. The generated patient states are further subdivided into 80%
training/10% validation/10% testing datasets to be used to train the DL-based model
described in the next section.

2.5. Model Design and Training

In order to select the model architecture that offers the greatest potential training
performance, several different approaches are tested. However, the choice was limited by
two major factors: first, the architecture does not need to be adapted for timeseries data
since the inputs chosen are snapshots of patients’ states, as described above; therefore,
Recurrent Neural Networks (RNNs) are excluded. Second, no advanced neural network
architectures, such as residual layers or transformers, are to be used in order to maintain a
reduced model complexity. Accordingly, the models tested out in this step were made up
of stacked fully connected layers, convolutional layers or a combination of both.

Several models of both architectures were tested, with varying depths and types of
layers, including regularisation, dropout and normalisation layers and with different layer
sizes, dropout rates, regularisation factors, learning rates, batch sizes and loss functions.
This was done in order to uncover the hyperparameters that have a significant effect on
the training process. Each of these architectures was trained for 50 epochs. After this initial
testing phase, a provisional best performing model structure is decided on based on a
statistical comparison of the four output parameters listed in Table 2 (PaO2, PaCO2, pH and
HCO3) with the outputs generated by the original simulation. Further improvements of
this model are done through hyperparameter optimisation as described in the next section.

2.6. Hyperparameter Tuning

Hyperparameters are the variables that affect the way in which a model is built
or its training process and can be altered either through a process of trial and error or
automatically using optimisation algorithms [45,46]. In order to uncover potential hyper-
parameter combinations through which model training and performance can be improved,
the Ray (https://www.ray.io/ (accessed on 3 February 2023)) framework is employed to
perform hyperparameter tuning [31,47]. This framework can also take advantage of avail-
able HPC resources by distributing the tuning process over several nodes, thus reducing
the time needed to run the trials and making the process more efficient.

The schedulers used by Ray Tune in the optimisation process described in this
manuscript are HyperBand, Asynchronous HyperBand, Population-Based Training (PBT)
and the default First-In, First-Out (FIFO) [48–50]. These algorithms distribute the tuning
task over the available resources and may interfere with the process by introducing pertur-
bations as is the case for PBT or by shutting down under-performing tasks as is the case
for HyperBand and Asynchronous HyperBand. Aside from FIFO, which was chosen to
serve as a control in this experiment, the remaining schedulers were chosen based on their
purported resource efficiency and accuracy. The comparison of the different algorithms is
thus intended to highlight the most successful both in terms of resource use and accuracy
of results for this specific application.

In this experiment, the tuned parameters are the learning rate, the batch size, the
dropout rate, the loss function and the presence of an intermediate fully connected layer
before the output layer in the network architecture. The choice of tuning these specific
hyperparameters stemmed from the initial testing carried out in the model design and
training phase described in Section 2.5 where changing these parameters had a significant
effect on how the models performed. The tuning process is carried out to minimise the
validation error value, which serves to reduce the possibility of an overfitting model being

https://www.ray.io/
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selected as the best performing trial. After tuning, the best performing parameters for
each scheduler are used to retrain the ML-based model and to highlight the improvement
in its prediction performance. Best performance is thus based on the models with the
most effective loss reduction and where the output R2 scores are closest to 1 for all output
parameters. These scores quantify the deviation of the model results from the outputs
generated by the original simulation.

3. Results
3.1. Performance of the C-Based Model

The data generated as per Section 2.4 are used as input for the C-based simulation.
To do that, it was necessary to hard code the information into an entry-point function for
the simulation, which was done through Python. Additionally and to take advantage of
the available HPC resources, the process was automated through a jobscript that recruits
the necessary resources and modules, then initialises the aforementioned Python script
that in turn scatters the data over the recruited CPUs using MPI. Each worker on the
cluster generates its own copies of the entry-point function, compiles and then runs them,
then collects the outputs and stores them. When all the tasks are completed successfully,
the mother node gathers all the stored outputs, sorts them and then appends them to the
original inputs, before saving them as a Comma-Separated Values (CSV) file to be used for
training the ML model.

Table 4 presents the average duration of a short (60 min equivalent) and a long
(120 min equivalent) simulation in MATLAB and compares it to the average duration of
those simulations using the C-based simulation on HPC, which highlights the speed-up
that was achieved through this process.

Table 4. Comparison of the average duration of the original MATLAB-based simulation with the
ported C-code version.

Short Simulation
(run_time = 60)

Long Simulation
(run_time = 120)

MATLAB Simulation 51 s 259.1 s
C-based Simulation on HPC 23.1 s 108.8 s

3.2. Neural Network Architecture Choice

Different types of neural network architectures with varying depths were tested with
the available data. The best performing were based on fully connected layers and on 1D
convolutional layers. Further experiments with different depths of the two architectures
were performed. From these experiments, it was clear that models built with stacked fully
connected layers underperformed compared to the approaches using convolutional layers.
Additionally, extending the training duration did not lead to improvement in the results
and in some cases led to overfitting.

Applying CNN-based models to the task at hand resulted in more consistent perfor-
mance even with shallow architectures. Additionally, some of the Convolutional Neural
Network (CNN) models did overfit, but in general the models using this architecture
reached lower Mean Absolute Error (MAE) in fewer training steps than the fully connected
models. The evolution of the MAE during training and validation for several models of
both network architectures are presented in Figure 3.

For both of these architectures, several iterations of testing were done during which the
depths of the networks were varied, as well as the widths of their layers and the addition of
dropout and pooling layers into the network design. This process was done in combination
with updating the learning rate, batch size and regularisation rates in order to find a rough
estimate of the range of hyperparameters as well as the combination of layers that produced
a promising model. Based on the results of these experiments, the parameters to be tuned
during the hyperparameter tuning process were selected and the ranges over which the
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tuning would occur were estimated. Furthermore, the chosen network architecture would
be based on CNNs with the possibility of adapting the architecture during the tuning
process. Additionally, this network would have four one-dimensional convolution layers,
with kernel size of 64 for the first layer and 128 for the remaining layers. The output from
the final convolution layer is flattened before being fed either to an intermediate fully
connected layer or directly to the output layer.

Figure 3. Training (blue) and validation (orange) MAE for several neural networks built either using
the fully connected architecture or as CNNs.

3.3. Hyperparameter-Tuning Results

Four different schedulers were used in the hyperparameter-tuning step of this experi-
ment in order to provide performance comparisons of the different applications. Figure 4
presents the training and validation MAE values of the different trials for each of the
schedulers used.

Running on 16 nodes of DEEP-ESB cluster, the FIFO scheduler provides a benchmark
as it distributes the 64 available tuning jobs. In this approach, new trials cannot be started
until the prescribed maximum number of training epochs of previously scheduled tasks is
completed. Completing all the trials required a total of 78 min. The HyperBand scheduler
performed early stopping on many trials that were underperforming, which allowed the
tuning process to complete within a shorter duration (46 min). Asynchronous HyperBand
performed in a similar manner, taking 64 min to complete all the trials. The early stopping is
evident in the learning curves of these two scheduling algorithms (Figure 4b,c). Finally, PBT
took the longest to complete due to the method with which it implements perturbations at
specific times during the model-training process. This is visible in the spikes of the learning
curves in Figure 4d. At these points in the training process, the scheduler reruns each trial
with a slightly modified learning rate. This resulted in the hyperparameter tuning with the
PBT scheduler taking 160 min to complete.

The best performing model parameters from each scheduler are presented in Table 5.
A common aspect of the best performing models is the presence of the intermediate fully
connected layer before the output layer of the network. Similarly, the dropout rates and
learning rates were all within close range for the four models.
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Figure 4. Curves showing the MAE for each of the 64 hyperparameter-tuning trials. Each graph
represents the trials for one scheduling algorithm: (a) FIFO, (b) HyperBand, (c) Asynchronous
HyperBand and (d) PBT.

Table 5. Parameters of the best performing trial from each Hyperparameter-Tuning Scheduler.

Scheduler Learning
Rate

Loss
Function

Dropout
Rate Batch Size Additional Fully

Connected Layer

FIFO 4 × 105 MSE 0.5 128 True
HyperBand 8 × 105 MAE 0.52 64 True
Async. HyperBand 3 × 105 MAE 0.5 128 True
PBT 5.8 × 105 MSE 0.54 128 True

3.4. Final Model Performance Analysis

The results from each parameter combination listed in Table 5 are presented in Figure 5.
The learning curves for the networks trained on the parameters from the FIFO and the
Asynchronous HyperBand trials both show some overfitting towards the second half of
the training process. This is also reflected in the R2 score graphs for the output parameters,
where it can be seen that prediction performance for PaCO2, bicarbonate concentration and
pH is reduced compared to the networks from the HyperBand and PBT trials. Additionally,
the R2 score graphs show that PaO2 prediction accuracy is consistently lower than the
remaining output parameters, although still above 0.90.
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Figure 5. Learning Curves of the Training (blue) and Validation (orange) MAE of the models using
the best parameters as selected by each scheduling algorithm, accompanied by their respective
per-parameter R2 score bar graph.

4. Discussion

Converting the NPS to C helped highlight the speed-up that can be achieved through
the use of HPC resources. Running multiple simulations simultaneously as well as the
increased efficiency and reduced overhead of C code reduced the code execution times
and made it possible to generate more data with which to train the proposed ML models.
In the end, the average duration of simulations was less than half the average duration
of simulations in MATLAB. Additionally, processing and storing the output data was a
computation- and communication-intensive process which was greatly simplified through
the availability of online storage on the pre-established HPC-enabled platform for medical
ML and data science [30].

The results of the DL model training step of this research highlighted the inherent
differences between a fully connected (i.e., traditional Artificial Neural Network (ANN))
architecture and a convolution-based approach. While ANNs are more likely to give value
to every input parameter, CNNs are more adapted to uncover connections between the
inputs and infer meaning from them, which might explain why these networks consistently
performed better. The results in Figure 3 show that CNNs might overfit the data if the
layers are not well tuned, but in most cases the performance surpassed that of ANNs and
lower MAE values were reached in shorter training periods, which ultimately makes the
convolutional approach more resource-efficient. Additionally, the curves consistently show
the validation error being lower than the training error; this is due to the regularisation
and dropout layers introduced in the network architectures to reduce overfitting. These
layers are active during the training process but inactive by design during validation and
testing (https://keras.io/getting_started/faq/ (accessed 10 February 2023)).

Similarly, when considering resource efficiency, HyperBand and its successor Asyn-
chronous HyperBand make the best use of the available resources to distribute the available
tasks. Besides the reduction in computation time, these two approaches minimise strag-
glers, that is the number of allocated resources that are not effectively being used for
computational tasks. Furthermore, the recommendations from the Ray framework high-
light Asynchronous HyperBand as a more capable and efficient scheduler than the original
HyperBand (https://docs.ray.io/en/latest/tune/api_docs/schedulers.html (accessed 10
February 2023)). In the case of PBT, resource efficiency is secondary to uncovering more
effective approaches through parameter perturbations. Although this approach could
be beneficial for applications where minor changes of parameters might greatly alter the

https://keras.io/getting_started/faq/
https://docs.ray.io/en/latest/tune/api_docs/schedulers.html
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outcome of the experiment, the computational overhead necessary for PBT to complete the
trials was judged too great for the research purposes described in this manuscript.

The performance of these models is comparable to the performance of the first CNN
model in Figure 3, which shows that the best combination of parameters can be reached
through a process of trial and error, although it required running several trials to find
the best parameters and was extremely time- and resource-consuming and the many
combinations were difficult to keep track of. Making use of the hyperparameter-tuning
methods streamlined the process and had the added benefit of managing the computation
resources and distributing the trials without much interference.

The models trained on the best parameters generated from the tuning process highlight
the need to take advantage of early stopping during training. Such an approach might
produce better predictive performance from the models trained on the parameters selected
by FIFO and Asynchronous HyperBand where overfitting was a clear issue. The model
trained on the parameters selected by HyperBand took the longest time to train due to the
lower batch size but still had a performance similar to that of the PBT model in terms of R2

scores for PaCO2, bicarbonate concentration and pH. Moreover, it is clear from the results
that all models have high prediction accuracy for the four output parameters (R2 > 0.90),
although the prediction of PaO2 was consistently lower. This could be due to possible
physiological patterns that were not effectively represented within the data, although future
tests with larger data sizes might shed more light on the issue.

These results highlight the fact that the surrogate model manages to accurately em-
ulate the performance of the NPS within a statistically acceptable range. Although the
performance of the models developed through this approach has not been compared with
existing diagnostic support models, the surrogate model benefits greatly from the accuracy
that is inherent to the original mechanistic simulation. On the other hand, in replacing
the NPS with the DL-based surrogate model, the computational overhead due to nested
calculation and equilibration loops is reduced. Additionally, following the experimental
procedure described herein, further surrogate models can easily be developed from the
NPS with the intent of diagnosing other conditions.

The results described in this research further showcase the benefits of building spe-
cialised surrogate models from existing complex medical mechanistic models, a process that
is well established in many scientific fields as described by Gherman et al. [32]. Through
this process, significantly representative, more easily applicable and more lightweight
models can be made available within hospital ICUs. This has the added benefit of not
exposing ICUs to unnecessary external threats of data breaches, not requiring specialised
and closed-source software and at the same time not exposing the specific inner workings
of the models themselves. Furthermore, this approach benefits from the portability of the
developed models, as they can be trained within the platform and exported as offline regres-
sors to be implemented within a container environment. These benefits come at the price
of slightly reduced accuracy, although the resulting model predictions are still adequate for
supporting clinicians in diagnosing potential disease onset and identifying the need for
extra medical attention for a given patient. Another shortcoming of the research described
herein is the fact that our surrogate is effectively a black box model. This goes against the
current modus operandi of model development for clinical applications where explainable
AI methods are recommended. It follows that developing explainable AI models for clinical
diagnosis is one of the research focus points within the developed ML and data science
platform described in this manuscript.

5. Conclusions

This article described the process by which a pre-established machine learning and
data science platform was used to facilitate the conversion of a MATLAB-based virtual
patient model. The process took advantage of available HPC infrastructure to parallelise
the original model in order to generate synthetic data that was later used to train ML-based
surrogate models. The performance of the models was improved through hyperparameter
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tuning, which also took advantage of parallelisation. The resulting model performance
closely mimics the performance of the original model, though with a massive improvement
in the speed with which the results are generated. Additionally, the work shed light on
the resource use as a means by which to improve efficiency; algorithmic finetuning of
the models using parallel computing can efficiently uncover parameter combinations that
would otherwise require a long process of trial and error. The work on model conversion
is far from complete but offers a glimpse into the clinical applications of virtual patient
simulators as real-time diagnostic support tools for clinicians and ICU personnel, especially
in situations where early warning can greatly improve outcomes for patients.
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CC Cloud Computing
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ESB Extreme Scale Booster
FIFO First-In, First-Out
FiO2 Fraction of Inspired Oxygen
FTP File Transfer Protocol
HPC High-Performance Computing
ICU Intensive Care Unit
JSC Jülich Supercomputing Centre
JUWELS Jülich Wizard for European Leadership Science
MAE Mean Absolute Error
MIMIC-III Medical Information Mart for Intensive Care - III
ML Machine Learning
MPI Message Passing Interface
MSA Modular Supercomputing Architecture
NPS Nottingham Physiology Simulator
NumPy Numerical Python
OpenCV Open Source Computer Vision Library
PBT Population-Based Training
PNG Portable Network Graphics
PaO2 Partial Pressure of Arterial Oxygen
PaCO2 Partial Pressure of Arterial Carbon Dioxide
P/F ratio Ratio of PaO2 to FiO2
Rcomp Compartment Resistance to Flow
RNN Recurrent Neural Network
RT-PCR Reverse transcription polymerase chain reaction
SLURM Simple Linux Utility for Resource Management
SMITH Smart Medical Information Technology for Healthcare
SSH Secure Shell
SvO2 Venous Oxygen Blood Saturation
VRcomp Compartment Vascular Resistance
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